1,029 research outputs found

    New Records for the Arctic Shrew, Sorex arcticus and the Newly Recognized Maritime Shrew, Sorex maritimensis

    Get PDF
    We report the first record for the Arctic Shrew (Sorex arcticus) in the state of Montana, USA. We also report range extensions for the closely related Maritime Shrew (Sorex maritimensis) in New Brunswick and Nova Scotia, Canada. These collections augment our limited knowledge of the ranges and habitat associations of these rarely collected shrews, and highlight the need for a careful assessment of the status of S. maritimensis in Canada

    Whole-genome sequencing for national surveillance of Shiga toxin–producing Escherichia coli O157

    Get PDF
    Background. National surveillance of gastrointestinal pathogens, such as Shiga toxin–producing Escherichia coli O157 (STEC O157), is key to rapidly identifying linked cases in the distributed food network to facilitate public health interventions. In this study, we used whole-genome sequencing (WGS) as a tool to inform national surveillance of STEC O157 in terms of identifying linked cases and clusters and guiding epidemiological investigation. Methods. We retrospectively analyzed 334 isolates randomly sampled from 1002 strains of STEC O157 received by the Gastrointestinal Bacteria Reference Unit at Public Health England, Colindale, in 2012. The genetic distance between each isolate, as estimated by WGS, was calculated and phylogenetic methods were used to place strains in an evolutionary context. Results. Estimates of linked clusters representing STEC O157 outbreaks in England and Wales increased by 2-fold when WGS was used instead of traditional typing techniques. The previously unidentified clusters were often widely geographically distributed and small in size. Phylogenetic analysis facilitated identification of temporally distinct cases sharing common exposures and delineating those that shared epidemiological and temporal links. Comparison with multi locus variable number tandem repeat analysis (MLVA) showed that although MLVA is as sensitive as WGS, WGS provides a more timely resolution to outbreak clustering. Conclusions. WGS has come of age as a molecular typing tool to inform national surveillance of STEC O157; it can be used in real time to provide the highest strain-level resolution for outbreak investigation. WGS allows linked cases to be identified with unprecedented specificity and sensitivity that will facilitate targeted and appropriate public health investigations

    Applying phylogenomics to understand the emergence of Shiga Toxin producing Escherichia coli O157:H7 strains causing severe human disease in the United Kingdom

    Get PDF
    Shiga Toxin producing Escherichia coli (STEC) O157:H7 is a recently emerged zoonotic pathogen with considerable morbidity. Since the serotype emerged in the 1980s, research has focussed on unravelling the evolutionary events from the E. coli O55:H7 ancestor to the contemporaneous globally dispersed strains. In this study the genomes of over 1000 isolates from human clinical cases and cattle, spanning the history of STEC O157:H7 in the United Kingdom were sequenced. Phylogenetic analysis reveals the ancestry, key acquisition events and global context of the strains. Dated phylogenies estimate the time to the most recent common ancestor of the current circulating global clone to 175 years ago, followed by rapid diversification. We show the acquisition of specific virulence determinates occurred relatively recently and coincides with its recent detection in the human population. Using clinical outcome data from 493 cases of STEC O157:H7 we assess the relative risk of severe disease including HUS from each of the defined clades in the population and show the dramatic effect Shiga toxin complement has on virulence. We describe two strain replacement events that have occurred in the cattle population in the UK over the last 30 years; one resulting in a highly virulent strain that has accounted for the majority of clinical cases in the UK over the last decade. This work highlights the need to understand the selection pressures maintaining Shiga-toxin encoding bacteriophages in the ruminant reservoir and the study affirms the requirement for close surveillance of this pathogen in both ruminant and human populations

    Whole Genome Sequencing for Public Health Surveillance of Shiga Toxin-Producing Escherichia coli Other than Serogroup O157

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) are considered to be a significant threat to public health due to the severity of gastrointestinal symptoms associated with human infection. In England STEC O157 is the most commonly detected STEC serogroup, however, the implementation of PCR at local hospital laboartories has resulted in an increase in the detection of STEC other than serogroup O157 (non-O157 STEC). The aim of this study was to evaluate the use of whole genome sequencing (WGS) for routine public health surveillance of non-O157 STEC by comparing this approach to phenotypic serotyping and PCR for subtyping the stx-encoding genes. Of the 102 isolates where phenotypic and genotypic serotyping could be compared, 98 gave fully concordant results. The most common non-O157 STEC serogroups detected were O146 (22) and O26 (18). All but one of the 38 isolates that could not be phenotypically serotyped (designated O unidentifiable or O rough) were serotyped using the WGS data. Of the 73 isolates where a flagella type was available by traditional phenotypic typing, all results matched the H-type derived from the WGS data. Of the 140 sequenced non-O157 isolates, 52 (37.1%) harboured stx1 only, 42 (30.0%) had stx2 only, 46 (32.9%) carried stx1 and stx2. Of these, stx subtyping PCR results were available for 131 isolates and 121 of these had concordant results with the stx subtype derived from the WGS data. Non-specific primer binding during PCR amplification, due to the similarity of the stx2 subtype gene sequences was the most likely cause. The results of this study showed WGS provided a reliable and robust one-step process for characterisation of STEC. Deriving the full serotype from WGS data in real time has enabled us to report a higher level of strain discrimination while stx subtyping provides data on the pathogenic potential of each isolate, enabling us to predict clinical outcome of each case and to monitor the emergence of hyper-virulent strains

    The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping

    Get PDF
    In this work we present a reliable technique for the production of large areas of high aspect-ratio patterns and describe their use as model super-hydrophobic systems. The high thickness and straight sidewalls possible with SU-8 were used to generate dense patterns of small pillars. These photoresist patterns could be used directly, without the need for micromoulding. A method is given allowing resist thickness to be varied over a wide range and a bottom antireflective layer was used to simplify patterning on reflective substrates. This patterning technique allows rapid testing of wetting theories, as pattern size and depth can be varied simply and samples can be produced in sufficient numbers for laboratory use. We show how the static contact angle of water varies with pattern height for one sample-pattern and how static and dynamic contact angles vary with dimension using high aspect-ratio patterns

    Reviews

    Get PDF
    George MacDonald: Divine Carelessness and Fairytale Levity. Daniel Gabelman. Reviewed by Bonnie Gaarden. The Gender Dance: Ironic Subversion in C.S. Lewis\u27s Cosmic Trilogy. Monika B. Hilder. Preface by Matthew Dickerson. Reviewed by Joe R. Christopher. Sir Gawain and the Green Knight: In a Modern English Version with a Critical Introduction. John Gardner. Reviewed by Perry Neil Harrison. Myths of Light: Eastern Metaphors of the Eternal. Joseph Campbell. Reviewed by Christopher Tuthill. The Riddles of the Hobbit. Adam Roberts. Reviewed by Jon Garrad. The Modern Literary Werewolf: A Critical Study of the Mutable Motif. Brent A. Stypczynski. Reviewed by Sharon L. Bolding. Fairy Tales Reimagined: Essays on New Retellings. Ed. by Susan Redington Bobby. Reviewed by Kazia Estrada. C.S. Lewis\u27s Perelandra: Reshaping the Image of the Cosmos. Ed. Judith Wolfe and Brendan Wolfe. Reviewed by Holly Ordway. The Ideal of Kingship in the Writings of Charles Williams, C.S. Lewis, and J.R.R. Tolkien: Divine Kingship is Reflected in Middle-Earth. Christopher Scarf. Reviewed by Melody Green. The Ring of Words: Tolkien and the Oxford English Dictionary. By Peter Gilliver, Jeremy Marshall, and Edmund Weiner. Reviewed by Mike Foster. Tolkien: The Forest and the City. Ed. Helen Conrad-O\u27Briain and Gerard Hynes. Reviewed by T.S. Miller. Tolkien Studies X. Edited by Michael D.C. Drout, Verlyn Flieger, and David Bratman. Reviewed by Janet Brennan Croft. Seven: An Anglo-American Literary Review 30. Edited by Marjorie Lamp Mead. Reviewed by Janet Brennan Croft

    Charged Chiral Fermions from M5-Branes

    Get PDF
    We study M5-branes wrapped on a multi-centred Taub-NUT space. Reducing to String Theory on the circle fibration leads to D4-branes intersecting with D6-branes. D-braneology shows that there are additional charged chiral fermions from the open strings which stretch between the D4-branes and D6-branes. From the M-theory point of view the appearance of these charged states is mysterious as the M5-branes are wrapped on a smooth manifold. In this paper we show how these states arise in the M5-brane worldvolume theory and argue that are governed by a WZWN-like model where the topological term is five-dimensional.Comment: A reference to an equation number was correcte

    SUMO chain-induced dimerization activates RNF4

    Get PDF
    Dimeric RING E3 ligases interact with protein substrates and conformationally restrain the ubiquitin-E2-conjugating enzyme thioester complex such that it is primed for catalysis. RNF4 is an E3 ligase containing an N-terminal domain that binds its polySUMO substrates and a C-terminal RING domain responsible for dimerization. To investigate how RNF4 activity is controlled, we increased polySUMO substrate concentration by ablating expression of SUMO protease SENP6. Accumulation of SUMO chains in vivo leads to ubiquitin-mediated proteolysis of RNF4. In vitro we demonstrate that at concentrations equivalent to those found in vivo RNF4 is predominantly monomeric and inactive as an ubiquitin E3 ligase. However, in the presence of SUMO chains, RNF4 is activated by dimerization, leading to both substrate ubiquitylation and autoubiquitylation, responsible for degradation of RNF4. Thus the ubiquitin E3 ligase activity of RNF4 is directly linked to the availability of its polySUMO substrates

    The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast

    Get PDF
    During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation

    Use of genome sequencing to investigate the molecular basis of bacteriaphage interaction of the Escherichia coli O157 typing phages and the elucidation of the biological and public health significance of phage type

    Get PDF
    Background Shiga toxin producing Escherichia coli (STEC) O157 causes severe gastrointestinal disease and haemolytic uremic syndrome, and has a major impact on public health worldwide with regular outbreaks and sporadic infection. Phage typing, i.e. the susceptibility of STEC O157 strains to a bank of 16 bacteriophages, has been used in the UK to differentiate STEC O157 for the past 25 years and the phage type (PT) can be an epidemiological marker of strains associated with severe disease or associated with cases that occur from foreign travel. However, little is known about the molecular interactions between the typing phages (TP) and STEC O157. The aims of this thesis were to use whole genome sequencing to elucidate the genetic basis for phage typing of STEC O157 and through this understand genetic differences between strains relevant to disease severity and epidemiology. Results Sequencing the STEC O157 TPs revealed that they were clustered into 4 groups based on sequence similarity that corresponded with their infectivity. Long read sequencing revealed microevolutionary events occuring in STEC O157 genomes over a short time period (approximately 1 year), evidenced by the loss and gain of prophage regions and plasmids. An IncHI2 plasmid was found responsible for a change in Phage Type (PT) from PT8 to PT54 during two related outbreaks at the same restaurant. These changes resulted in a strain (PT54) that was fitter under certain growth conditions and associated with a much larger outbreak (140 as opposed to 4 cases). TraDIS (Transposon directed Insertion site sequencing) was used to identify 114 genes associated with phage sensitivity and 44 genes involved in phage resistance, emphasising the complex nature of identifying specific genetic markers of phage susceptibility or resistance. Further work is required to prove their phage-related functions but several are likely to encode novel phage receptors. Deletion of a Stx2a prophage from a PT21/28 strain led to a strain that typed as PT32, supporting the concept that the highly pathogenic PT21/28 lineage I strains emerged from Stx2c+ PT32 strains in the last two decades by acquisition of Stx2a-encoding prophages. Conclusions This body of work has highlighted the complexity of bacteriophage interaction and investigated the genetic basis for susceptibility and resistance in E. coli. The grouping of the TPs showed that resistance or susceptibility to all members of a typing group was likely to be caused by one mechanism. IncHI2 was identified as one of the markers for the PT54 phenotype. The Stx2a prophage region was associated with the switch from PT32 to PT21/28, although PT32 strains containing both Stx2a and Stx2c-encoding prophages have been isolated and can provide insights into phage variation underpinning the susceptibility to the relevant typing phages. The TraDIS results indicated that susceptibility or resistance was governed by multiple genetic factors and not controlled by a single gene. The significance of LPS for initial protection from phage adsorption was evident and a number of novel genes controlling phage susceptibility and resistance identified including the Sap operon and stringent starvation protein A respectively. While SNP-based typing provides an excellent indication of the evolution and relatedness of strains, phage typing can provide real insights into short term evolution of the bacteria as PTs can be altered by mobile elements such as prophages and plasmids. This study has shown that, although complex, genetic determinants for PT can be mined from the genome and allow us to understand the evolution of this zoonotic pathogen between host species and during outbreaks
    • …
    corecore